Ni-MH VHT F 11500

ARTS Energy's VHT high temperature Ni-MH series are perfectly suited to professional applications requiring a battery with an exceptionnal robustness. It is designed to operate in very demanding environment.

To meet customers' requirements, ARTS Energy provides custom-designed and standardised battery packs.

For your battery design and system needs, please **contact ARTS Energy**.

ELECTRICAL CHARACTERISTICS			
•	Nominal voltage (V)	1.2	
•	Typical capacity (mAh)*	11500	
•	IEC minimum capacity (mAh)*	11300	
•	IEC designation	HRMT 33/91	
•	Impedance at 1000 Hz (m Ω)	5	
* Charge 16 h at C/10, discharge at C/5.			

DIMENSIONS		
• Diameter (mm)	32.15 ± 0.1	
Height (mm)	88.8 ± 0.4	
Top flat area diameter (mm)	5.6	
 Weight (g) Dimensions are given for bare cells. 	215	

CHARGE CONDITIONS	Temp. (°C)	Current
• ELU applications	0 to +40	Intermittent
Back up applications	-20 to +85	C/3 max
 Solar applications 	-40 to +85	C/3 max

DISCHARGE CONDITIONS	Temp. (°C)	Current	
	+20 to +85	3C max	
	0 to +85	C/2 max	
	-20 to +85	C/5 max	
	-40 to +85	C/20 max	

CYCLING CONDITIONS	Cycling	Life duration
• ELU applications	1 discharge/month max	4 years
Back up applications	1 discharge/day max	5 to 10 years
 Solar applications 	1 discharge/day max	5 to 10 years

APPLICATIONS

- Emergency lighting (ELU)
- Back-up systems
- Pack shaving applications (money saving)
- Professional electronics
- Solar

MAIN BENEFITS

- Very high cycle life
- Exceptional temperature range
- Superior robustness

TECHNOLOGY

- Foam positive electrode
- Plastic bonded metal-hybride negative electrode

TYPICAL DIMENSIONS

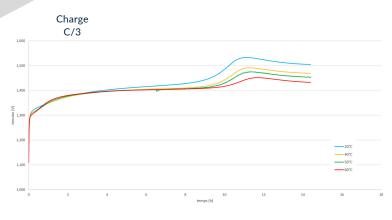
Typical dimensions (mm). Without tube.

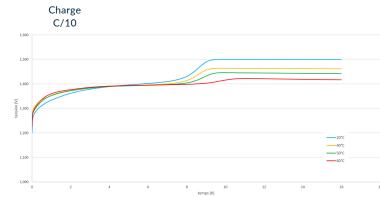
The VHT F has been designed to offer a very long life duration in a wide range of temperature.

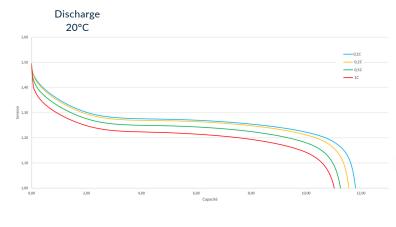
In ELU the VHT F will offer more than 4 years life at 40°C permanent temperature (T type cell).

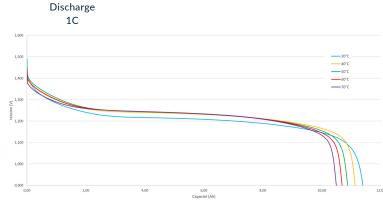
In back up applications, the VHT F will offer 5 to 10 years life. In cycling application (solar, peak shaving), the VHT F will offer 5 to 10 years life in an environment from -40°C to +85°C. It delivers for example, 5000 cycles at 50% DOD.

To meet customers' requirements, ARTS Energy provides custom-designed and standardised battery packs.

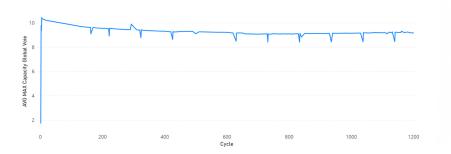

For applications below -20°C and above +60°C, please contact ARTS Energy to confirm the optimum battery design, and to agree the usage profiles.




STORAGE


Recommended: \pm 5°C to \pm 25°C Relative humidity: 65 ± 5 %

Performances



Cycling @40°C 100% DOD

